

US009351917B2

US 9,351,917 B2

May 31, 2016

(12) United States Patent

Blondel et al.

(54) HAIR COMPOSITION WITH IMPROVED RHEOLOGY

(71) Applicant: Conopco, Inc., Englewood Cliffs, NJ

(US)

(72) Inventors: Frederic Jean-Michel Blondel,

Lezigneux (FR); Christopher John

Roberts, Bebington (GB)

(73) Assignee: Conopco, Inc., Englewood Cliffs, NJ

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/371,298

(22) PCT Filed: Jan. 29, 2013

(86) PCT No.: PCT/EP2013/051700

§ 371 (c)(1),

(2) Date: Jul. 9, 2014

(87) PCT Pub. No.: **WO2013/113705**

PCT Pub. Date: Aug. 8, 2013

(65) Prior Publication Data

US 2014/0356306 A1 Dec. 4, 2014

(30) Foreign Application Priority Data

Jan. 31, 2012 (EP) 12305117

(51) **Int. Cl.**

 A61K 8/81
 (2006.01)

 A61Q 5/12
 (2006.01)

 A61Q 5/00
 (2006.01)

(52) U.S. Cl.

2800/48 (2013.01); A61K 2800/74 (2013.01)

(58) Field of Classification Search

(45) **Date of Patent:**

(10) **Patent No.:**

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,180,473	A *	1/1993	Akune et al 162/168.2
2005/0265950	A1*	12/2005	Chrisstoffels A61K 8/8182
			424/70.17
2008/0264867	A1*	10/2008	Mika et al 210/679

FOREIGN PATENT DOCUMENTS

EP	2116226	A1		11/2009	
JP	2001181354	Α	×	7/2001	
JP	2002284627	Α	*	10/2002	
WO	WO9421224			9/1994	
WO	WO 9934768	A2	*	7/1999	 A61K 8/44

OTHER PUBLICATIONS

Zhou et al. Biomaterials 2012 33:2473-2481 available online Dec. 22, 2011.*

Podual et al. Polymer 2000 41:3975-3983.*

Tinovis® CD Rheology Modifier Technical Data Sheet 2010.*

"Fortified Growth Combing Cream", Mintel Abstract, Sep. 1, 2010, (XP002677053) (www.gnpd.com).

"Wonder Serum Spray", Mintel Abstract, Oct. 1, 2010, (XP002677052) (www.gnpd.com).

PCT International Search Report in PCT application PCT/EP2013/

051700 dated Mar. 25, 2013. European Search Report in EP application EP 12 30 5117 dated Jun.

4, 2012.

* cited by examiner

Primary Examiner — Robert A Wax Assistant Examiner — Caralynne Helm

(74) Attorney, Agent, or Firm — Karen E. Klumas

(57) ABSTRACT

A hair treatment composition comprising a thickener which comprises a copolymer derived from the polymerization of at least a non-ionic monomer (a) and at least a cationic monomer (b)

14 Claims, No Drawings

40

1

HAIR COMPOSITION WITH IMPROVED RHEOLOGY

The present invention relates to a hair treatment composition with improved rheology.

Conditioning compositions typically comprise rheology modifiers to maintain good sensorial properties during application. An example is Tinovis CD® which is commercially available from BASF.

Low pH formulations offer enhanced claims for internal repair of damaged hair fibres. Unfortunately, this aspect of hair fibre repair treatment is not possible from compositions comprising the standard rheology modifier Tinovis CD® since the polymer is sensitive to increased levels of electrolyte. The sensitivity manifests itself as a drop in viscosity which has a detrimental effect on the quality of the product.

Accordingly, there remains a need for leave on treatments with improved rheology. The present invention, therefore, provides a hair treatment composition comprising a thickener 20 which comprises a co-polymer derived from the polymerization of at least a non-ionic monomer (a) and at least a cationic monomer (b), wherein the non-ionic monomer (a) is selected from the group consisting of methacrylamide, N-isopropylacrylamide, N-methylolacrylamide, N-vinylformamide, 25 N-vinylpyridine, N-vinylpyrrolidone, 2-hydroxyethylacrylate, poly(ethylene glycol) acrylate, and/or poly(ethylene glycol) methacrylate.

Preferably the non-ionic monomer (a) is poly(ethylene glycol) acrylate, and/or poly(ethylene glycol) methacrylate.

Most preferably, the non-ionic monomer (a) is PEG-meth-acrylate of the following structure corresponding to Formula I

$$\bigcup_{n=1}^{\infty} O + \bigcup_{n=1}^{\infty} O$$

n is from 1 to 250 and \boldsymbol{Z} is \boldsymbol{H} or an alkyl group with 1 to 5 carbon atoms.

The cationic monomer (b) is selected from the group consisting of acryloyloxyethyltrialkylammonium and/or methacryloyloxyethyltrialkylammonium, quaternized or salified, diallyldimethyl ammonium chloride, acrylamidopropyltrimethylammonium chloride, and/or methacrylamidopropyltrimethylammonium chloride.

Preferably, the cationic monomer (b) is acryloyloxyethyltrialkylammonium and/or methacryloyloxyethyltrialkylammonium, quaternized or salified.

Most preferably, the cationic monomer (b) is methacryloy-loxyethyltrialkylammonium salt of the following formula (II) 55

Preferably, non-ionic monomer represents from 0.1 to 15 65 mol % of the polymer, without taking into account the crosslinking agent or the chain transfer agent.

2

Preferably, the cationic monomer represents from 85 to 99.9 mol % of the polymer, without taking into account the crosslinking agent or the chain transfer agent.

Preferably, the polymer is crosslinked with an amount of crosslinking agent comprises between 50 to 5,000 ppm in weight based on the total amount of cationic and non-ionic monomers.

The crosslinking agent is selected from the group comprising methylene bisacrylamide (MBA), ethylene glycol diacrylate, polyethylene glycol dimethacrylate, diacrylamide, cyanomethylacrylate, vinyloxyethylacrylate or methacrylate, triallylamine, formaldehyde, glyoxal, compounds of the glycidylether type such as ethyleneglycol diglycidylether, or epoxy.

A chain transfer agent may be used in the polymerization of the co-polymer of the invention. The chain transfer agent is preferably selected from the group comprising phosphatetype chain transfer agents, such as sodium hypophosphite, lower alcohols, such as methanol or isopropanol, thiol based chain transfer agent, such as 2-mercaptoethanol and mixtures of the foregoing agents.

A preferred embodiment of the present invention is a copolymer derived from the polymerization of

(a) 0.1 to 15 mol % of PEG-methacrylate of the following structure corresponding to Formula I.

$$\bigcup_{n=1}^{\infty} O + \bigcup_{n=1}^{\infty} Z$$

n is from 1 to 250 and Z is H or an alkyl group with 1 to 5 carbon atoms. And

(b) 85 to 99.9 mol % of methacryloyloxyethyltrialky-lammonium salt of the following formula (II)

A more preferred embodiment of the present invention is a copolymer derived from the polymerization of

(a) 0.1 to 15 mol % of PEG-methacrylate of the following structure corresponding to Formula I.

$$\bigcup_{n=1}^{\infty} (1)$$

n is from 1 to 250 and Z is H or an alkyl group with 1 to 5 carbon atoms. And

(b) 85 to 99.9 mol % of methacryloyloxyethyltrialky-lammonium salt of the following formula (II)

$$\bigcup_{O} \bigcup_{N_{+}} \bigcup_{Cl_{-}}$$

And

(c) 50 to 5,000 ppm (based on the total amount of non-ionic and cationic monomers) of crosslinking agent.

According to the invention, the water-soluble polymers used do not require the development of a particular polymerization method. They can be obtained by all polymerization techniques well known to a person skilled in the art (solution polymerization, suspension polymerization, gel polymerization, precipitation polymerization, emulsion polymerization (aqueous or reverse) followed or not by a spray drying step, suspension polymerization, micellar polymerization followed or not by a precipitation step).

According to one advantageous aspect of the invention, the polymer is made by reverse phase polymerisation for instance 25 as is described generally in U.S. Pat. No. 4,059,552.

An inverse emulsion polymerization process usually comprises the following steps:

A) forming a water-in-oil emulsion of an aqueous solution containing the monomers and/or the crosslinking agent 30 and/or the transfert agent and an emulsifying agent, wherein said emulsifying agent preferably should have an HLB value in the range of 3 to 8 and more preferably in the range of 4 to 6, in a hydrophobic phase, like an oil selected form the group comprising mineral oils, synthetic oils, 35 vegetable oils, silicone oils and mixtures thereof;

and B) polymerizing said monomers to form a polymer emulsion, optionally, by using a free radical generating catalyst to initiate the reaction, and controlling the temperature of the reaction mixture.

The resulting inverse emulsion polymer composition according to the present invention may have an active polymer concentration of about 25 to about 75% by weight.

The inverse emulsion composition according to the present invention may further comprise an inverting surfactant in a 45 concentration of up to about 5 weight percent. The inverting surfactant may improve the polymer's dissolution in water. Suitable inverting surfactants are those with an HLB of at least about 10, preferably 10 to 20, with an HLB of about 10 to about 15 being most preferred. Especially suitable are the non-ionic inverting surfactants. Typical "inverting agents" include fatty alcohol ethoxylates, fatty acid esters-sorbitanpoly ethylene glycols-glycerol, alkyl polyglucosides, etc. Certain silicone compounds such as dimethicone copolyols can also be used.

According to the present invention, it is also possible to concentrate (by heating under vacuum to remove excess water and organic solvent by distillation) or to isolate the polymer by all known techniques. In particular, there are many processes for obtaining a powder on the basis of soluble 60 polymer emulsions or ones which swell in water. These processes involve the isolation of the active matter from other constituents of the emulsion. Such processes include: precipitation in a non-solvent medium such as acetone, methanol, and other polar solvents: simple filtration then permits isolation of the polymer particle, azeotropic distillation in the presence of an agglomerating agent and stabilizing polymer

4

which makes it possible to obtain agglomerates which are easily isolated by filtration before drying of the particle is undertaken, "Spray drying", or drying by atomization or pulverization, which consists of creating a cloud of fine droplets of emulsion in a stream of hot air for a controlled period.

While the present invention has been described with respect to specific embodiments thereof, it will be recognized by those of ordinary skill in the art that many modifications, enhancements, and/or changes can be achieved without departing from the spirit and scope of the invention.

Preferably, the composition comprises from 0.01 to 5% wt. of the composition, more preferably from 0.1 to 1% and most preferably from 0.15 to 0.3% wt. of the composition.

The compositions according to the invention are preferably leave-on conditioning compositions. By conditioning composition is meant compositions which have as their primary object conditioning keratinous fibre, such as hair, as opposed to compositions which have as their primary aim cleansing the hair while providing a conditioning benefit. Accordingly, it is preferred that the composition comprises less than 5% wt. anionic surfactant, more preferably less than 5% wt. cleansing surfactant. More preferably, the composition comprises less than 3% wt. anionic surfactant, still more preferably less than 3% wt. cleansing surfactant and especially preferably no anionic surfactant.

By leave-on composition is meant that the composition is applied to the hair and not rinsed-off. Typically, this is applied to the hair before the user goes to bed at night.

The composition according to the invention comprises from 0.001 to 5% wt. conditioning active, more preferably from 0.1 to 4.0% by wt. conditioning active.

Preferably, the composition comprises a conditioning active selected from acid neutralized amidoamine surfactant, fatty alcohols and conditioning silicones.

Preferably, the acid neutralized amidoamine surfactant is of general formula:

wherein R1 is a fatty acid chain with from 12 to 22 carbon atoms, R2 is an alkylene group containing from one to 4 carbon atoms and R3 and R4 are, independently, an alkyl group having from one to four carbon atoms.

Preferably, the acid neutralized amidoamine surfactant is selected from stearamidopropyl dimethylamine, stearamidopropyl diethylamine, stearamidoethyl diethylamine, stearamidoethyl diethylamine, palimtamidopropyl dimethylamine, behenamidopropyl dimethylamine, myristamidopropyl dimethylamine, oleoamidopropyl dimethylamine, ricinoleoamidopropyl dimethylamine and mixtures.

Preferably, the composition according to the invention comprises less than 0.5% wt. cationic surfactant. More preferably, the composition according to the invention comprises less than 0.2% wt. cationic surfactant.

Preferably, the composition according to the invention comprises less than 0.5% wt. and more preferably less than 0.2% wt. a cationic surfactant selected from cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, cocotrimethylammonium chloride, and the corresponding hydroxides thereof. Further suitable cationic surfactants include those

materials having the CTFA designations Quaternium-5, Quaternium-31 and Quaternium-18.

Conditioners of the invention advantageously incorporate a fatty alcohol material. The combined use of fatty alcohol materials and cationic surfactants in conditioning compositions is believed to be especially advantageous, because this leads to the formation of a lamellar phase, in which the cationic surfactant is dispersed.

Representative fatty alcohols comprise from 8 to 22 carbon atoms, more preferably 16 to 20. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is also advantageous in that they contribute to the overall conditioning properties of compositions of the invention.

The level of fatty alcohol material in conditioners of the invention is conveniently from 0.01 to 5%, preferably from 0.1 to 3% by weight of the composition.

Silicone is a particularly preferred ingredient in hair treatment compositions of the invention. In particular, condition- 20 in which ers of the invention will preferably also comprise emulsified particles of silicone, for enhancing conditioning performance. The silicone is insoluble in the aqueous matrix of the composition and so is present in an emulsified form, with the silicone present as dispersed particles.

Suitable silicones include polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone. Also suitable for use compositions of the invention are polydimethyl siloxanes having hydroxyl end groups, which have the CTFA designation dimethiconol. Also 30 suitable for use in compositions of the invention are silicone gums having a slight degree of cross-linking, as are described for example in WO 96/31188. These materials can impart body, volume and stylability to hair, as well as good wet and dry conditioning.

The viscosity of the emulsified silicone itself (not the emulsion or the final hair conditioning composition) is typically at least 10,000 cst. In general we have found that conditioning performance increases with increased viscosity. Accordingly, the viscosity of the silicone itself is preferably at least 60,000 40 cst, most preferably at least 500,000 cst, ideally at least 1,000, 000 cst. Preferably the viscosity does not exceed 10⁹ cst for ease of formulation.

Emulsified silicones for use in conditioners of the invention will typically have an average silicone particle size in the 45 composition of less than 30, preferably less than 20, more preferably less than 10 microns. We have found that reducing the particle size generally improves conditioning performance. Most preferably the average silicone particle size of the emulsified silicone in the composition is less than 2 50 microns, ideally it ranges from 0.01 to 1 micron. Silicone emulsions having an average silicone particle size of ≤0.15 microns are generally termed microemulsions.

Particle size may be measured by means of a laser light scattering technique, using a 2600D Particle Sizer from Mal- 55 vern Instruments.

Suitable silicone emulsions for use in the invention are also commercially available in a pre-emulsified form.

Examples of suitable pre-formed emulsions include emulsions DC2-1766, DC2-1784, and microemulsions DC2-1865 60 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Cross-linked silicone gums are also available in a pre-emulsified form, which is advantageous for ease of formulation. A preferred example is the material available from Dow Corning as DC 65 X2-1787, which is an emulsion of cross-linked dimethiconol gum. A further preferred example is the material available

6

from Dow Corning as DC X2-1391, which is a microemulsion of cross-linked dimethiconol gum.

A further preferred class of silicones for inclusion in conditioners of the invention are amino functional silicones. By "amino functional silicone" is meant a silicone containing at least one primary, secondary or tertiary amine group, or a quaternary ammonium group.

Examples of suitable amino functional silicones include: (i) polysiloxanes having the CTFA designation "amodimethicone", and the general formula:

in which x and y are numbers depending on the molecular weight of the polymer, generally such that the molecular weight is between about 5,000 and 500,000.

(ii) polysiloxanes having the general formula:

G is selected from H, phenyl, OH or O₁₋₈ alkyl, e.g. methyl; a is 0 or an integer from 1 to 3, preferably 0;

b is 0 or 1, preferably 1;

m and n are numbers such that (m+n) can range from 1 to 2000, preferably from 50 to 150;

m is a number from 1 to 2000, preferably from 1 to 10;

n is a number from 0 to 1999, preferably from 49 to 149, and R' is a monovalent radical of formula — $C_qH_{2q}L$ in which q is a number from 2 to 8 and L is an aminofunctional group selected from the following:

$$-NR"-CH_{2}-CH_{2}-N(R")_{2}$$

$$-N(R")_{2}$$

$$-N^{+}(R")_{3}A^{-}$$

$$-N^{+}H(R")_{2}A^{-}$$

$$-N^{+}H_{2}(R")A^{-}$$

$$-N(R")-CH_{2}-CH_{2}-N^{+}H_{2}(R")A^{-}$$

in which R" is selected from H, phenyl, benzyl, or a saturated monovalent hydrocarbon radical, e.g. C₁₋₂₀ alkyl, and;

A is a halide ion, e.g. chloride or bromide.

Suitable amino functional silicones corresponding to the above formula include those polysiloxanes termed "trimethylsilylamodimethicone" as depicted below, and which are sufficiently water insoluble so as to be useful in compositions of the invention:

wherein x+y is a number from about 50 to about 500, and wherein R is an alkylene group having from 2 to 5 carbon atoms. Preferably, the number x+y is in the range of from about 100 to about 300.

(iii) quaternary silicone polymers having the general formula:

$$\begin{array}{l} \{(R^1)(R^2)(R^3)N^\dagger C H_2 C H (O H) C H_2 - O - (C H_2)_3 [Si \\ (R^4)(R^5) - O -]_n - Si(R^6)(R^7) - (C H_2)_3 - O - \\ C H_2 C H (O H) C H_2 N^\dagger (R^8)(R^9)(R^{10}) \} (X^-)_2 \end{array}$$

wherein R¹ and R¹⁰ may be the same or different and may be independently selected from H, saturated or unsaturated long or short chain alk(en)yl, branched chain alk(en)yl and C₅-C₈ cyclic ring systems;

R² thru' R⁹ may be the same or different and may be independently selected from H, straight or branched chain lower alk(en)yl, and C₅-C₈ cyclic ring systems;

n is a number within the range of about 60 to about 120, preferably about 80, and

X⁻ is preferably acetate, but may instead be for example halide, organic carboxylate, organic sulphonate or the like.

Suitable quaternary silicone polymers of this class are ⁵ described in EP-A-0 530 974.

Amino functional silicones suitable for use in conditioners of the invention will typically have a mole % amine functionality in the range of from about 0.1 to about 8.0 mole %, preferably from about 0.1 to about 5.0 mole %, most preferably from about 0.1 to about 2.0 mole %. In general the amine concentration should not exceed about 8.0 mole % since we have found that too high an amine concentration can be detrimental to total silicone deposition and therefore conditioning performance.

The viscosity of the amino functional silicone is not particularly critical and can suitably range from about 100 to about 500,000 cst.

Specific examples of amino functional silicones suitable 20 for use in the invention are the aminosilicone oils DC2-8220, DC2-8166, DC2-8466, and DC2-8950-114 (all ex Dow Corning), and GE 1149-75, (ex General Electric Silicones).

Also suitable are emulsions of amino functional silicone oils with non ionic and/or cationic surfactant.

Suitably such pre-formed emulsions will have an average amino functional silicone particle size in the composition of less than 30, preferably less than 20, more preferably less than 10 microns. Again, we have found that reducing the particle size generally improves conditioning performance. Most preferably the average amino functional silicone particle size in the composition is less than 2 microns, ideally it ranges from 0.01 to 1 micron. Silicone emulsions having an average silicone particle size of ≤0.15 microns are generally termed microemulsions.

Pre-formed emulsions of amino functional silicone are also available from suppliers of silicone oils such as Dow Corning and General Electric. Specific examples include DC929 Cationic Emulsion, DC939 Cationic Emulsion, and the non-ionic emulsions DC2-7224, DC2-8467, DC2-8177 and DC2-8154 (all ex Dow Corning).

An example of a quaternary silicone polymer useful in the present invention is the material K3474, ex Goldschmidt.

The total amount of silicone incorporated into compositions of the invention depends on the level of conditioning desired and the material used. A preferred amount is from 0.01 to about 5% by weight of the total composition although these limits are not absolute. The lower limit is determined by the minimum level to achieve conditioning and the upper 50 limit by the maximum level to avoid making the hair and/or skin unacceptably greasy.

We have found that a total amount of silicone of from 0.3 to 4%, preferably 0.5 to 3%, by weight of the total composition is a suitable level.

Other ingredients may include viscosity modifiers, preservatives, colouring agents, polyols such as glycerine and polypropylene glycol, chelating agents such as EDTA, antioxidants such as vitamin E acetate, fragrances, antimicrobials and sunscreens. Each of these ingredients will be present in an amount effective to accomplish its purpose. Generally these optional ingredients are included individually at a level of up to about 5% by weight of the total composition.

Preferably, compositions of this invention also contain adjuvants suitable for hair care. Generally such ingredients 65 are included individually at a level of up to 2%, preferably up to 1%, by weight of the total composition.

8

Among suitable hair care adjuvants, are:

(i) natural hair root nutrients, such as amino acids and sugars. Examples of suitable amino acids include arginine, cysteine, glutamine, glutamic acid, isoleucine, leucine, methionine, serine and valine, and/or precursors and derivatives thereof. The amino acids may be added singly, in mixtures, or in the form of peptides, e.g. di- and tripeptides. The amino acids may also be added in the form of a protein hydrolysate, such as a keratin or collagen hydrolysate. Suitable sugars are glucose, dextrose and fructose. These may be added singly or in the form of, e.g. fruit extracts.

(ii) hair fibre benefit agents. Examples are:

ceramides, for moisturising the fibre and maintaining cuticle integrity. Ceramides are available by extraction from natural sources, or as synthetic ceramides and pseudoceramides. A preferred ceramide is Ceramide II, ex Quest. Mixtures of ceramides may also be suitable, such as Ceramides LS, ex Laboratoires Serobiologiques.

free fatty acids, for cuticle repair and damage prevention.

Examples are branched chain fatty acids such as 18-methyleicosanoic acid and other homologues of this series, straight chain fatty acids such as stearic, myristic and palmitic acids, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid and arachidonic acid. A preferred fatty acid is oleic acid. The fatty acids may be added singly, as mixtures, or in the form of blends derived from extracts of, e.g. lanolin.

Mixtures of any of the above active ingredients may also be used.

Preferably, the composition is a leave-on conditioning composition.

Preferably, the composition of the invention has a pH of from 2 to 6, more preferably, from 3 to 5.

In a second aspect there is provided the use of a composition according to any preceding claim for conditioning the hair.

EXAMPLE 1

Ingredient	% wt.
Water	To 100
Lactic acid	0.1
Stearamidopropyl dimethylamine	1.0
Fatty alcohol	3.0
Preservative	0.2
Mineral oil	3.0
Dimethicone	2.0
PQ-37 and acrylamide**	0.25
Glycerine	2.0
MO resin	0.4

^{*} Tinovis CD ex. BASF

EXAMPLE 2

Ingredient	% v	wt.
Water	To 1	100
Lactic acid	0.	1
Stearamidopropyl dimethyl:	amine 1.	0
Fatty alcohol	3.	0
Preservative	0.	2
Mineral oil	3.	0
Dimethicone	2.	0

-continued

10 -continued

		_				
Ingredient 9	% wt.			Results - Natu	ral PQ-37 and	acrylate
methacryloyloxyethyltrialkylammonium salt and PEG methacrylate*	0.25	5	Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
y	0.4		316.120	173.340	0.548	1.724
The crosslinked copolymer is in inverse emulsion form, methacryloylox			562.140	228.750	0.407	1.279
mmonium salt and PEG methacrylate represent respectively 98 mol % 2 mol rount of these two monomers.	1% of the total	10	999.660	317.960	0.318	1.000

EXAMPLE 3

Study of Combing Cream Formulations Under Low pH Conditions

Formulations according to Examples 1 and 2 were pH adjusted using Lactic Acid to achieve set target pH values of 5.5, 5.0, 4.5, 4.0, 3.5 and 3.0 (all +/-0.15 pH units). Natural 20 pH was used as the control

Rheology measurements were all conducted using a Bohlin C-VOR rheometer fitted with a serrated cup and bob geometry (C14 DIN 53019). Range of shear rate employed was from $0.001~\rm s^{-1}$ - $1000~\rm s^{-1}$. Measurements were carried out at 25° C.

The gap between the tips of the cup and bob serrations was $700\,\mu m$ and the measurements were made in 'controlled rate' mode (stress is continuously adjusted to achieve an actual shear rate that is close to the target shear rate).

No pre-shear was applied to the samples with the shear rate being cycled (Up-Down-Up) in logarithmic steps with 8 pts per decade (Purpose of cycling is to check for any irreversible shear induced changes).

Data was taken from the 2^{nd} 'Up' Cycle to ensure a consistent baseline.

Shear Rate vs Normalised Viscosity and Shear-Stress vs Normalised Viscosity plots were generated to compare the samples rheological behaviour.

EXAMPLE 4

Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
0.001	10.678	10671.000	41644.552
0.002	20.973	11792.000	46019.357
0.003	22.385	7081.400	27635.810
0.006	21.753	3870.000	15103.028
0.010	21.861	2186.800	8534.187
0.018	22.096	1243.000	4850.921
0.032	22.532	712.820	2781.845
0.056	23.277	414.080	1615.985
0.100	24.339	243.510	950.320
0.178	25.910	145.760	568.842
0.316	28.024	88.652	345.973
0.562	30.499	54.255	211.735
1.000	33.014	33.028	128.895
1.777	35.913	20.205	78.852
3.161	39.215	12.407	48.419
5.621	43.421	7.724	30.145
9.996	48.964	4.898	19.116
17.777	55.880	3.143	12.267
31.612	64.889	2.053	8.011
56.207	77.532	1.379	5.383
99.950	93.462	0.935	3.649
177.750	114.110	0.642	2.505
316.100	144.170	0.456	1.780
562.110	192.000	0.342	1.333
999.640	256.150	0.256	1.000

						ate			
	D 1 27.	170.05		- 45	Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1	
	Results - Nati	ural PQ-37 and	acrylate		0.001	9.571	9562,200	41836,717	_
Shear Rate	Shear Stress	Viscosity			0.001	18.855	10602.000	46386.069	
(1/s)	(Pa)	(Pas)	Visc/Visc@1000 s-1		0.003	23.053	7291,700	31902.783	
(1/8)	(ra)	(ras)	VISC/VISC@1000 s=1	_	0.006	23.555	4190,700	18335.229	
0.001	13.047	13045.000	41012.985		0.010	24.125	2413.600	10560,028	
0.002	22.902	12884.000	40506.807	50	0.018	24.829	1396.800	6111.306	
0.003	33.328	10540,000	33137.360		0.032	25.788	815,770	3569.172	
0.006	42.199	7507.100	23602.037		0.056	26.921	478.950	2095.511	
0.010	47.850	4786,400	15048.260		0.100	28.306	283,200	1239.062	
0.018	50,778	2856,200	8979.784		0.178	29.948	168.480	737.137	
0.032	50.963	1612.200	5068.696		0.316	31.767	100.490	439.666	
0.056	51.450	915.390	2877.951	55	0.562	33.748	60.035	262.666	
0.100	52.668	526.940	1656.679	33	1.000	35.862	35.875	156.961	
0.178	54.256	305.230	959.632		1.777	38.447	21.631	94.640	
0.316	56.229	177.880	559.248		3.161	41.499	13.129	57.442	
0.562	58.259	103.640	325.840		5.621	45.375	8.072	35.317	
1.000	60.364	60.385	189.848		9.996	50.371	5.039	22.046	
1.778	62.619	35.228	110.755		17.777	56.807	3.196	13.981	
3.161	65.479	20.716	65.130	60	31.612	65.164	2.061	9.019	
5.621	69.129	12.298	38.664		56.211	76.732	1.365	5.973	
9.997	74.044	7.407	23.287		99.950	91.197	0.912	3.992	
17.777	80.910	4.552	14.310		177.750	111.600	0.628	2.747	
31.611	90.040	2.848	8.955		316.120	143.760	0.455	1.990	
56.207	102.700	1.827	5.745		562.120	177.410	0.316	1.381	
99.950	119.540	1.196	3.760	65	999.640	228.480	0.229	1.000	
177.750	142.570	0.802	2.522						_

40

	pH 5.5 P	Q-37 and acryla	mide	_		=	continued	
Shear Rate	Shear Stress	Viscosity		_		pH 5.0 PC	Q-37 and acryla	mide
(1/s)	(Pa)	(Pas)	Visc/Visc@1000 s-1	_ 5	Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
0.001 0.002	3.932 7.129	3933.900 4010.200	23505.617 23961.520			22.020	100.070	400.500.2
0.002	7.612	2408.400	14390.535		0.056 0.100	22.938 24.192	408.070 242.040	1986.902 1178.498
0.006	7.813	1389.900	8304.852		0.100	25.659	242.040 144.350	702.844
0.010	8.085	808.820	4832.815		0.316	27.353	86.528	421.307
0.018	8.440	474.790	2836.938	10	0.562	29.198	51.941	252.902
0.032	8.869	280.570	1676.446		1.000	31.249	31.262	152.215
0.056	9.412	167.450	1000.538		1.777	33.590	18.897	92.010
0.100	10.087	100.920	603.011		3.161	36.514	11.552	56.247
0.178	10.933	61.506	367.507		5.621	39.960	7.109	34.613
0.316	11.939	37.766	225.657		9.997	44.638	4.465	21.742
0.562	13.143	23.380	139.699	15	17.776	50.358	2.833	13.793
1.000 1.778	14.566 16.260	14.571 9.148	87.064 54.658		31.612	58.171	1.840	8.960
3.161	18.205	5.759	34.413		56.207	68.587	1.220	5.942
5.621	20.660	3.676	21.962		99.950	82.688	0.827	4.028
9.996	23.772	2.378	14.209		177.750	100.630	0.566	2.756
17.776	27.886	1.569	9.373		316.100	134.990	0.427	2.079
31.612	33.409	1.057	6.315	20	562.150	160.310	0.285	1.389
56.207	41.352	0.736	4.396		999.660	205.310	0.205	1.000
99.950	51.958	0.520	3.106					
177.750	65.827	0.370	2.213					
316.120	92.591	0.293	1.750					
562.120	118.800	0.211	1.263	2.5				
999.640	167.300	0.167	1.000	25	-	pH 4.5	PQ-37 and acry	late
				_	Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
	II & O.	DO 27 1			0.001 0.002	7.579 15.080	7571.600 8485.200	34505.765 38669.279
	рн э.о	PQ-37 and acry.	ate	_ 30	0.002	18.681	5910.700	26936.608
Shear Rate	Shear Stress	Viscosity			0.006	19.413	3453.500	15738.504
(1/s)	(Pa)	(Pas)	Visc/Visc@1000 s-1		0.010	20.080	2008.700	9154.172
(1,0)	(14)	(1 45)	* 150 * 150 (G) 1000 U 1	_	0.018	20.854	1173.200	5346.580
0.001	2.575	2581.200	37363.751		0.032	21.766	688.550	3137.903
0.002	5.559	3119.600	45157.275	35	0.056	22.852	406.570	1852.846
0.003	7.277	2304.900	33364.214	33	0.100	24.160	241.720	1101.581
0.006	6.829	1214.400	17578.854		0.178	25.694	144.550	658.752
0.010	6.668	666.980	9654.763		0.316	27.433	86.785	395.502
0.018 0.032	6.177	347.480	5029.892 3030.847		0.562	29.295	52.113	237.493 142.975
0.032	6.618 6.257	209.380 111.300	1611.105		1.000 1.777	31.362 33.533	31.373 18.866	85.977
0.100	6.148	61.509	890.364	40	3.161	35.924	11.365	51.793
0.178	6.402	36.017	521.358		5.621	39.422	7.013	31.961
0.316	6.705	21.211	307.036		9.996	44.229	4.425	20.165
0.562	7.005	12.462	180.392		17.777	50.317	2.831	12.899
1.000	7.289	7.292	105.553		31.610	59.352	1.878	8.557
1.777	7.856	4.420	63.981		56.207	69.492	1.236	5.635
3.161	8.494	2.687	38.898	45	99.950	84.282	0.843	3.843
5.621	9.371	1.667	24.130		177.750	103.870	0.584	2.663
9.997	11.067	1.107	16.026		316.120	131.070	0.415	1.889
17.776	12.666	0.713	10.314		562.150	167.020	0.297	1.354
31.612	14.029	0.444	6.424		999.640	219.350	0.219	1.000
56.207	18.649	0.332	4.803					
99.950	21.743	0.218	3.149	50				
177.750 316.100	26.168 37.016	0.147 0.117	2.131 1.695					
562.150	48.760	0.117	1.256					
999.660	69.059	0.069	1.000			pH 4.5 PC	Q-37 and acryla	mide
				- 55	Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
	nЦ 5 ∩ Da	Q-37 and acryla	mide	-	0.001 0.002	3.758 6.785	3757.700 3819.300	22084.631 22446.665
	p11 J.0 F	y or and actyla	imae	_	0.003	7.223	2286.700	13439.318
Shear Rate	Shear Stress	Viscosity			0.006	7.401	1316.900	7739.641
(1/s)	(Pa)	(Pas)	Visc/Visc@1000 s-1		0.010	7.758	775.910	4560.153
()	(- 47)	(- ***)		- 60	0.018	8.094	455.300	2675.874
0.001	7.842	7850.500	38224.267		0.032	8.449	267.250	1570.673
0.002	15.493	8711.500	42416.496		0.056	9.032	160.670	944.284
0.003	19.161	6061.800	29515.045		0.100	9.690	96.947	569.774
0.006	19.731	3510.100	17090.759		0.178	10.554	59.374	348.951
0.010	20.326	2033.100	9899.211	65	0.316	11.574	36.616	215.198
0.018	21.064	1184.900	5769.306	65	0.562	12.831	22.824	134.140
0.032	21.911	693.180	3375.110		1.000	14.229	14.235	83.661

See			13					14	
Shear Rate Cheb		-	continued		_		-	continued	
1,177		pH 4.5 P	Q-37 and acryla	mide	_		pH 4.0 PC	Q-37 and acryla	mide
3.161 17.852 5.648 33.196 99.050 69.766 0.498 1.298 5.561 0.3203 5.359 2.1151 17.7750 5.697 2.1414 2.342 15.768 17.7750 5.617 0.1161 1.161 1.161 1.161 5.6270 1.1610 0.730 0.4292 5.9950 0.11800 0.134 2.198 5.6210 17.7750 0.64.70 0.374 2.198 5.6210 17.1000 0.134 2.198 5.6210 17.1000 0.130 0.1000 7.7750 0.64.70 0.374 2.198 5.6210 17.1000 0.130 0.1000 7.7750 0.64.70 0.1000 0.1000 7.7750 0.64.70 0.1000 0.1000 7.7750 0.64.70 0.1000 0.1000 8.7850 0.1000 0.1000 0.1000 8.8850 0.1000 0.1000 0.1000 9.775 0.1750 0.15180 0.1000 9.775 0.1520 0.1520 0.1000 9.775 0.1520 0.1520 0.1000 9.775 0.1520 0.1520 0.1000 9.775 0.1520 0.1000 9.775 0.1520 0.1520 9.775 0.1520 0.15180 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1520 9.775 0.1520 0.1000 9.775 0.1520 0.1520 9.775 0.1520 0.				Visc/Visc@1000 s-1	5				Visc/Visc@1000 s-1
5.6.21 20.230 3.599 21.151 177.750 35.355 0.390 21.54 1.17.77 27.250 1.5482 90.988 1.9 56.150 130.30 0.232 1.391 1.17.77 27.250 1.5480 90.981 1.9 56.150 130.30 0.232 1.391 99.950 1.560 0.519 3.049 1.777 1.723 1.6640 0.319 3.049 1.777 1.723 1.678 1.778 1.6640 0.319 1.000 1.758 1.6640 0.017 1.000 1.758 1.6640 0.002 1.731 7.232 0.000 1.731 7.732.00 3.818.72 0.000 1.731 7.732.00 3.818.72 0.000 1.919.72 1.972.20 3.818.72 0.000 1.919.72 1.972.00 8.977.78 0.000 1.975.73 1.972.20 8.977.78 0.000 1.975.73 1.972.20 8.977.78 0.000 1.975.41 1.972.00 8.977.78 0.000 1.975.41 1.972.00					_	56.207	38.970	0.693	4.159
9.990 3.1.414 2.342 13.766 14.777 17.777 13.102						99.950			2.987
17.777 27.520									
33.192 1.050					10				
96.9070 141.052 0.730 4.292 177.750 66.470 0.374 2.198 0.091 177.750 66.470 0.374 2.198 1.56 502.110 172.090 0.222 1.307 1.56 909.640 170.090 0.222 1.307 1.600 1.731 1.731 1.732 <					10	562.150	130.330	0.232	1.391
99900 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)									
177.75									
156,2110									
Part	562.110	125.050	0.222	1.307	15	-	pH 3.5	PQ-37 and acry	late
Shear Rate	999.640	170.090	0.170	1.000	_				Vice/Vice@1000 c 1
Pit 4.0 PQ-37 and aeryler 10							* * *		
Near Stress Viscosity Part Part Viscosity Part Part Viscosity Part Part Viscosity Part Par					_				
Shear Rate Shear Stress		pH 4.0	PQ-37 and acry	late	20	0.003	18.386	5816.400	
(1/8)					_				
0.001	Shear Rate	Shear Stress	Viscosity						
0.001 7.753 7752 000 \$1518.6782 0.005 22.563 401,420 1787.088 0.002 15.227 8565.500 38879.30 25.601,00 23.931 23.9420 1065.842 0.003 18.501 8852.300 2656.3933 0.178 25.506 143.490 68.878.180 0.010 19.719 1978.500 8890.527 0.562 29.360 52.228 232.507 0.018 20.599 1185.700 5259.407 1.000 31.58 31.540 140.409 0.056 22.2609 402.230 1882.746 30 3.016 36.949 11.689 5.225 0.108 22.607 402.230 182.744 85.225 3.016 36.949 11.689 5.225 0.138 25.607 144.400 651.887 9.996 45.649 45.67 20.330 0.138 27.905 87.013 394.957 17.777 51.678 2.907 12.942 1.000 32.242 30.81	(1/s)	(Pa)	(Pas)	Visc/Visc@1000 s-1					
0.0002 15.277 88.65.00 38879.906 25 0.108 22.931 239.420 1006.8144.90 63.8784 0.006 19.118 3400.100 15.43.253 0.316 27.530 86.523 385.180 0.010 19.779 1978.500 8890.527 0.562 29.300 52.228 232.2507 0.018 20.599 11.8870 5259.407 1.000 31.528 31.540 140.409 0.032 21.511 680.500 3088.829 1.7777 34.026 19.144 85.225 0.050 22.609 402.230 1825.746 30 3.161 36.949 11.689 52.037 0.178 25.607 1.44.060 653.897 9.996 45.649 4.567 20.332 0.316 27.505 87.013 39.995 31.612 59.999 1.897 8.447 1.000 32.044 32.017 43.277 54.137 35 71.777 51.578 3.62.27 1.348 1.269	0.004		#### OOO	05406 500	_				
0.003 18.501 \$582.300 26656.933 0.178 25.506 143.490 638.784 0.010 19.779 1978.800 8880.527 0.562 29.360 52.228 323.507 0.018 20.599 1188.700 5259.407 1.000 31.528 31.540 140.409 0.024 21.511 680.500 3088.829 1.777 34.026 19.144 85.225 0.056 22.609 402.230 1852.746 30 3.161 36.949 11.77 34.026 19.144 85.225 0.178 25.607 144.060 653.897 9.996 45.649 4.567 20.330 0.18 22.5001 \$2.838 239.815 17.777 \$1.678 2.007 12.942 1.000 32.004 32.017 145.327 \$6.207 71.348 1.269 5.651 1.778 34.620 10.475.327 \$4.137 \$6.207 71.348 1.269 5.651 1.779 4.6487 <t< td=""><td></td><td></td><td></td><td></td><td>2.5</td><td></td><td></td><td></td><td></td></t<>					2.5				
0.006 19,118 3400,100 15433,253 0.562 29,366 52,228 232,597 0.018 20,599 1158,700 5259,407 1.000 31,528 31,540 140,409 0.056 22,609 402,230 1852,746 30 3.161 36,949 11,689 52,037 0.100 24,003 140,606 653,897 1,996 45,644 40,711 7,243 32,242 0.178 25,607 144,060 653,897 9,996 45,649 4,567 20,330 0.316 27,505 87,013 394,957 1,777 1,678 2,907 1,2942 0.562 29,701 52,838 239,835 31,612 59,999 1,897 8,447 1,000 32,004 32,017 145,337 35 56,207 71,348 1,269 5,651 1,1777 32,807 2,971 13,484 999,50 86,330 0,844 3,845 31,612 37,700 1,934					25				
0.010 19.779 1978.500 8980.527 0.562 29.360 52.228 323.597 0.032 21.511 680.500 3088.829 1.777 34.026 19.144 85.225 0.056 22.609 402.230 1825.746 30 31.61 36.949 11.689 52.037 0.108 22.609 402.230 1825.746 30 5.621 40.711 7.243 32.242 0.178 25.607 144.060 653.897 9.996 45.649 4.567 20.303 0.316 27.505 87.013 394.957 17.777 51.678 2.007 12.942 1.000 32.004 32.017 145.327 56.207 71.348 1.269 5.651 1.778 34.620 19.476 88.403 35 99.950 86.330 0.664 3.845 3.161 37.700 119.27 \$4.137 35 177.750 106.240 0.99 46.487 46.50 21.108 562.15									
0.018 0.032 21.511 680.500 3088.829 1.777 34.026 19.144 85.225 0.056 22.699 402.230 1825.746 30 31.61 36.049 11.689 52.037 0.100 24.003 240.130 1089.964 5.621 40.711 7.243 32.242 0.178 25.607 144.060 653.897 9.996 45.649 4.567 20.330 0.316 27.505 87.013 394.957 17.777 51.678 2.907 12.942 0.562 29.701 52.838 23.835 31.612 59.979 1.897 8.447 1.000 32.004 32.017 145.327 56.207 71.348 1.269 5.651 1.778 34.620 19.476 88.403 35 19.9950 86.330 0.864 3.845 3.161 37.700 11.927 54.137 35 177.750 106.240 0.598 2.661 1.337.00 11.927 34.137 35 31.610 156.750 0.433 1.926 9.997 1.294 1.294 1.288 5.848 999.640 224.550 0.225 1.000 1.3161 0.168.30 0.601 2.728 3.1610 0.168.30 0.601 2.728 3.1610 0.168.30 0.601 2.728 3.1610 0.168.30 0.601 2.728 3.1610 0.168.30 0.601 2.728 3.1610 0.168.30 0.001 0.200 0.301 1.365 999.640 220.230 0.220 0.020 0.000 0.001 1.200 0.001 0.									
0.032 21511 680.500 3088.829 1.777 34.026 19.144 85.225 0.056 22.609 402.230 10825.746 30 3.161 36.949 11.689 52.037 0.178 25.607 144.060 653.897 9.996 45.649 45.67 20.330 0.316 27.505 87.013 394.997 17.777 51.678 2.907 12.942 0.502 29.701 52.838 239.835 17.777 51.678 2.907 12.942 1.000 32.044 32.017 145.327 56.207 71.348 1.269 5.651 1.778 34.620 19.476 88.403 3 31612 59.979 18.97 8.447 5.621 41.488 7.380 33.49 316.100 136.730 0.043 1.926 9.997 46.487 4.650 21.108 8.778 499.640 224.550 0.225 1.000 17.777 52.807 72.415 1									
0.056 22,069 40,220 1825,746 30 3.161 36,049 11,689 52,037 0.178 25,667 144,060 653,897 99,96 45,649 4,567 20,330 0.316 27,505 87,013 304,997 11,777 51,678 2,907 12,942 0.562 29,701 52,838 23,9835 31,612 59,979 1,897 8,447 1.000 32,004 32,107 145,327 56,207 71,348 1,269 5,651 1.778 34,620 19,476 88,403 35 177,750 106,240 0,598 2,661 3.610 37,700 11,927 34,137 316,100 136,750 0,483 1,926 9,997 46,487 4,650 21,108 562,150 173,290 0,308 1,372 17,777 52,807 72,415 1,288 5,848 49,956 49,94 224,550 0,225 1,000 17,775 10,6830 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
0.100					30				
0.316					30				
0.0062 29.701 52.838 239.835 31.612 59.979 1.897 8.447	0.178	25.607	144.060	653.897		9.996	45.649	4.567	20.330
10000 32.004 32.017 145.327 56.207 71.348 1.269 5.651 3.161 37.700 11.927 54.137 35 99.950 86.303 0.864 3.845 5.621 41.488 7.380 33.499 316.100 136.750 0.433 1.926 9.997 46.487 4.650 21.108 562.150 173.290 0.308 1.372 17.777 52.807 2.971 13.484 999.640 224.550 0.225 1.000 31.6120 61.333 1.934 8.878 8.778 8.267 72.415 1.288 5.848 99.950 85.357 0.022 1.000 1.365 99.9640 224.550 0.225 1.000 1.000 1.365 1.000 1.000 1.365 1.000 1.000 1.365 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
3.161 37.700 11.927 54.137 35 177.750 106.240 0.598 2.661 5.621 41.485 7.380 33.499 316100 136.750 0.433 1.926 9.997 46.487 4.650 21.108 562.150 173.290 0.308 1.372 17.777 52.807 2.971 13.484 999.640 224.550 0.225 1.000 1.000 1.000 1.000 1.200 1.200 0.000 1.200 0.000 1.200 0.000 1.200 0.000 1.000 1.200 0.000 1.200 0.000 1.200 0.000 1.000 1.200 0.000 1.000 1.800 0.001 1.365 999.640 220.230 0.220 1.000 1.000 1.000 1.200 0.000 1.200 0.000 1.200 0.0									
\$\frac{5621}{9.997} \$46.487 \$4.650 \$21.108 \$562.150 \$173.290 \$0.308 \$1.372 \$17.777 \$52.807 \$2.971 \$13.484 \$999.640 \$224.550 \$0.225 \$1.000 \$31.612 \$61.133 \$1.934 \$8.778 \$562.07 \$72.415 \$1.288 \$5.848 \$499.950 \$87.157 \$0.872 \$3.958 \$40 \$177.750 \$106.830 \$0.601 \$2.728 \$316.100 \$142.040 \$0.449 \$2.040 \$562.150 \$169.090 \$0.301 \$1.365 \$999.640 \$220.230 \$0.220 \$1.000 \$999.640 \$220.230 \$0.220 \$1.000 \$\$99.640 \$220.230 \$0.220 \$1.000 \$\$99.640 \$\$20.230 \$0.220 \$1.000 \$					35				
9997 46.487 4.650 21.108 562.150 173.290 0.308 1.372 17777 52.807 2.971 13.484 8.778 562.07 72.415 1.288 5.848 999.500 87.157 0.872 3.958 40 177.750 106.830 0.601 2.728 1316.100 142.040 0.449 2.040 562.150 169.090 0.301 1.365 999.640 220.230 0.220 1.000 1.365 999.640 220.230 0.220 1.000 1.365 999.640 20.200 1.000 1.200 1.300 1.365 999.640 20.200 1.000 1.300 1.365 999.640 1.300 1.300 1.300 1.365 999.640 1.300 1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
56,207 72,415 1.288 5.848 49 99,950 87,157 0.872 3.958 49 177,750 106,830 0.601 2.728 3161,00 142,040 0.449 2.040 562,150 169,090 0.301 1.365 999,640 220,230 0.220 1.000 8							221.330	0.223	1.000
99.950 87.157 0.872 3.958 40 177.750 106.830 0.601 2.728 316.100 142.040 0.449 2.040 562.150 169.090 0.301 1.365 999.640 220.230 0.220 1.000 PH 4.0 PQ-37 and acrylamide									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					40				
Second 169.090 0.301 1.365 220.230 0.220 1.000 1.000 Shear Rate Shear Stress Viscosity CPa) Visc/Visc@1000 s-1	177.750	106.830	0.601	2.728					
Shear Stress Shear Stress Viscosity (Pas) Visc/Visc@1000 s-1			0.449	2.040			nH 3.5 Pc	0-37 and acryla	mide
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						Chase Data			mac
PH 4.0 PQ-37 and acrylamide 0.002 5.632 3163.400 20147.761					- 45				Visc/Visc@1000 s-1
Shear Rate (I/s) Shear Stress (I/s) Viscosity (I/s) 0.003 5.880 1858.300 11835.552 Shear Rate (I/s) Shear Stress (I/s) Viscosity (I/s) 0.010 6.262 626.550 3990.510 (1/s) (Pa) (Pas) Visc/Visc@1000 s−1 50 0.018 6.541 368.010 2343.863 0.001 2.975 2972.900 17833.833 0.056 7.357 130.900 833.705 0.002 5.376 3026.600 18155.969 0.100 8.023 80.266 511.216 0.003 5.612 1775.900 10653.269 0.178 8.790 49.448 314.935 0.006 5.756 1024.400 6145.171 0.316 9.768 30.899 196.796 0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		** * * =	0.27 1 1	* 1	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		pH 4.0 P	Q-37 and acryla	mide	_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shear Data	Shear Strong	Viscocity						
0.001 2.975 2972.900 17833.833 0.032 6.937 219.430 1397.554 0.002 5.376 3026.600 18155.969 0.0100 8.023 80.266 511.216 0.003 5.612 1775.900 10653.269 0.178 8.790 49.448 314.935 0.006 5.756 1024.400 6145.171 0.316 9.768 30.899 196.796 0.010 5.970 597.190 3582.424 55 0.562 10.880 19.354 123.266 0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.178 8.231 46.302 277.756 9.996 20.576 2.059 13.111 0.316 9.146 28.933 173.563 6 <td></td> <td></td> <td></td> <td>Visc/Visc@1000 s_1</td> <td>50</td> <td></td> <td></td> <td></td> <td></td>				Visc/Visc@1000 s_1	50				
0.001 2.975 2972.900 17833.833 0.056 7.357 130.900 833.705 0.002 5.376 3026.600 18155.969 0.100 8.023 80.266 511.216 0.003 5.612 1775.900 10653.269 0.178 8.790 49.448 314.935 0.006 5.756 1024.400 6145.171 0.316 9.768 30.899 196.796 0.010 5.970 597.190 3582.424 55 0.562 10.880 19.354 123.266 0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.100 7.513 75.157 450.852 5.621 17.765 3.160 20.128 0.178 8.231 46.302 277.756 9.996<	(1/5)	(1 a)	(1 as)	V15C/ V15C@1000 5-1	_				
0.003 5.612 1775.900 10653.269 0.178 8.790 49.448 314.935 0.006 5.756 1024.400 6145.171 0.316 9.768 30.899 196.796 0.010 5.970 597.190 3582.424 55 0.562 10.880 19.354 123.266 0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.100 7.513 75.157 450.852 5.621 17.765 3.160 20.128 0.178 8.231 46.302 277.756 9.996 20.576 2.059 13.111 0.316 9.146 28.933 173.563 17.777 24.468 1.376 8.766 0.562 10.317 18.355 110.108 31.612	0.001	2.975	2972.900	17833.833					
0.006 5.756 1024.400 6145.171 0.316 9.768 30.899 196.796 0.010 5.970 597.190 3582.424 55 0.562 10.880 19.354 123.266 0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.100 7.513 75.157 450.852 5.621 17.765 3.160 20.128 0.178 8.231 46.302 277.756 9.996 20.576 2.059 13.111 0.316 9.146 28.933 173.563 6 17.777 24.468 1.376 8.766 0.562 10.317 18.355 110.108 31.612 29.124 0.921 5.868 1.000 11.760 11.765 70.576 56									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
0.018 6.217 349.740 2098.020 1.000 12.196 12.201 77.708 0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.100 7.513 75.157 450.852 5.621 17.765 3.160 20.128 0.178 8.231 46.302 277.756 9.996 20.576 2.059 13.111 0.316 9.146 28.933 173.563 17.777 24.468 1.376 8.766 0.562 10.317 18.355 110.108 31.612 29.124 0.921 5.868 1.000 11.760 11.765 70.576 56.207 36.397 0.648 4.124 1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.									
0.032 6.542 206.940 1241.392 1.777 13.635 7.671 48.859 0.056 6.974 124.070 744.271 3.161 15.448 4.887 31.126 0.100 7.513 75.157 450.852 5.621 17.765 3.160 20.128 0.178 8.231 46.302 277.756 9.996 20.576 2.059 13.111 0.316 9.146 28.933 173.563 17.777 24.468 1.376 8.766 0.562 10.317 18.355 110.108 31.612 29.124 0.921 5.868 1.000 11.760 11.765 70.576 56.207 36.397 0.648 4.124 1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276					55				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
0.316 9.146 28.933 173.563 17.777 24.468 1.376 8.766 0.562 10.317 18.355 110.108 60 31.612 29.124 0.921 5.868 1.000 11.760 11.765 70.576 56.207 36.397 0.648 4.124 1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276 1.757 9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000									
0.562 10.317 18.355 110.108 60 31.612 29.124 0.921 5.868 1.000 11.760 11.765 70.576 56.207 36.397 0.648 4.124 1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276 1.757 9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000									
1.000 11.760 11.765 70.576 56.207 36.397 0.648 4.124 1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276 1.757 9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000					60				
1.778 13.523 7.608 45.638 99.950 46.255 0.463 2.947 3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276 1.757 9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000									
3.161 15.399 4.872 29.226 177.750 58.382 0.328 2.092 5.621 17.730 3.154 18.921 316.120 87.204 0.276 1.757 9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000									
9.996 20.667 2.068 12.403 562.150 106.770 0.190 1.210 17.776 24.487 1.378 8.263 65 999.640 156.950 0.157 1.000									
17.776 24.487 1.378 8.263 ⁶⁵ 999.640 156.950 0.157 1.000									
17770 21707 11570 01205 7771010 130750 01157 11000									
51.612 29.985 0.949 5.690					65	999.640	156.950	0.157	1.000
	31.612	29.985	0.949	5.690					

Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1
0.001	6.410	6409.700	33602.621
0.002	12.218	6872.000	36026.212
0.003	14.156	4478.700	23479.423
0.006	14.690	2613.100	13699.083
0.010	15.247	1525.300	7996.330
0.018	15.901	894.500	4689.384
0.032	16.531	522.930	2741.442
0.056	17.382	309.220	1621.075
0.100	18.397	184.050	964.875
0.178	19.726	110.970	581.756
0.316	21.296	67.372	353.195
0.562	23.026	40.960	214.731
1.000	24.889	24.899	130.532
1.777	26.818	15.088	79.098
3.161	29.318	9.276	48.628
5.621	32.534	5.788	30.342
9.997	36.565	3.658	19.175
17.776	42.227	2.376	12.453
31.610	49.042	1.552	8.134
56.207	59.089	1.051	5.511
99.950	71.575	0.716	3.754
177.750	88.755	0.499	2.618
316.100	123.040	0.389	2.041
562.150	146.070	0.260	1.362
999.660	190.680	0.191	1.000

	pH 3.0 PC	Q-37 and acryla	mide	
Shear Rate (1/s)	Shear Stress (Pa)	Viscosity (Pas)	Visc/Visc@1000 s-1	
0.001	2.056	2058.600	16859.951	
0.002	3.656	2056.700	16844.390	
0.003	3.910	1237.100	10131.859	
0.006	4.033	717.620	5877.314	
0.010	4.232	423.360	3467.322	
0.018	4.417	248.460	2034.889	
0.032	4.630	146.490	1199.754	
0.056	4.938	87.847	719.468	
0.100	5.317	53.199	435.700	
0.178	5.819	32.733	268.084	
0.316	6.434	20.354	166.699	
0.562	7.214	12.833	105.102	
1.000	8.150	8.153	66.776	
1.777	9.261	5.211	42.675	
3.161	10.632	3.364	27.549	
5.621	12.255	2.180	17.856	
9.997	14.437	1.444	11.828	
17.777	17.369	0.977	8.002	
31.612	21.193	0.670	5.491	
56.207	27.490	0.489	4.006	
99.950	34.313	0.343	2.812	
177.750	43.495	0.245	2.004	
316.100	55.938	0.177	1.449	
562.110	84.262	0.150	1.228	
999.640	122.060	0.122	1.000	

CONCLUSIONS

There is a clear benefit displayed from the PQ-37/acrylate copolymer over PQ-37/acrylamide copolymer (Tinovis CD) in all aspects of studied rheology

Yield Stress is increased even when electrolyte is introduced by lowering the pH of the system.

Basic Shear profiles are maintained with some slight directional increase for the PQ-37/acrylate polymer.

The invention claimed is:

1. A hair treatment composition comprising a fatty alcoholcontaining lamellar phase, an acid neutralized amidoamine 16

surfactant, and a thickener which comprises a co-polymer derived from the polymerization of at least a non-ionic monomer (a) and at least a cationic monomer (b) and crosslinked, wherein the non-ionic monomer (a) is a poly(ethylene glycol) methacrylate of the following structure corresponding to Formula I:

$$\bigcup_{n=1}^{\infty} (1)$$

n is from 1 to 250 and Z is H or an alkyl group with 1 to 5 carbon atoms and wherein the cationic monomer (b) is a methacryloyloxyethyltrialkylammonium, quaternized or salified, wherein the cationic monomer represents from 85 to 99.9 mol% of the co-polymer, without taking into account any crosslinking agent or chain transfer agent that may be used in the polymerization,

and wherein the hair treatment composition has a pH of from 2 to 6 and is in the form of a leave-on hair conditioner that contains no anionic surfactant.

2. Composition according to claim 1 wherein the non-ionic monomer (a) is poly(ethylene glycol) methacrylate.

3. Composition according to claim 1 wherein the cationic monomer (b) is methacryloyloxyethyltrialkylammonium salt ³⁰ of the following formula (II)

4. Composition according to claim 1 wherein the non-ionic monomer (a) represents the balance of the mol % of the polymer, without taking into account the crosslinking agent or the chain transfer agent.

5. Composition according to claim 1 wherein the copoly-45 mer is crosslinked with 50 to 5,000 ppm by weight of crosslinking agent based on the total amount of cationic and non-ionic monomers.

6. Composition according to claim 5 wherein the crosslinking agent is selected from the group comprising methylene 50 bisacrylamide (MBA), ethylene glycol diacrylate, polyethylene glycol dimethacrylate, diacrylamide, cyanomethylacrylate, vi nyloxyethylacrylate or methacrylate, triallylamine, formaldehyde, glyoxal, compounds of the glycidylether type and epoxy.

7. Composition according to claim 1 wherein the co-polymer is added to the composition in the form of an inverse emulsion made by reverse phase polymerisation.

8. Composition according to claim **7** wherein the inverse emulsion is concentrated by heating under vacuum to remove excess water and organic solvent by distillation.

9. Composition according to claim 1 comprising from 0.01 to 5% wt. of the composition of said thickener.

10. The composition according to claim 1 wherein the fatty alcohol is present in an amount of 0.01 to 5% by weight of the composition.

11. The composition according to claim 1 wherein the fatty alcohol comprises from 8 to 22 carbon atoms.

- $12. \ The composition according to claim \ 1 \ wherein the fatty alcohol comprises cetyl and/or stearyl alcohol.$
- 13. The composition according to claim 1 wherein the acid neutralized amidoamine surfactant is of general formula:

wherein R1 is a fatty acid chain with from 12 to 22 carbon atoms, R2 is an alkylene group containing from one to 4 carbon atoms and R3 and R4 are, independently, an alkyl group having from one to four carbon atoms.

14. The composition of claim 1 further comprising a conditioning silicone.

* * * * *